pH dependence of self-splicing by the group IA2 intron in a pre-mRNA derived from the nrdB gene of bacteriophage T4.

نویسندگان

  • A S Sjögren
  • R Strömberg
  • B M Sjöberg
چکیده

The nrdB gene of bacteriophage T4 contains a group IA2 intron. We have investigated the kinetics of self-splicing by a shortened variant of nrdB pre-mRNA in the presence of the co-substrates guanosine and 2'-amino-2'-deoxyguanosine. The pH dependence of the first transesterification step displayed parallel linear correlations for the two different co-substrates up to pH 7, above which the reaction with guanosine levels off to become pH independent. The plot for the 30-fold slower reaction with 2'-aminoguanosine is linear up to pH 8-8.5 and then levels off. The linear correlations with slopes close to unity suggest that a deprotonation event accelerates the transesterification reaction and that a change in rate limiting step occurs at a first order rate constant of approximately 1 min-1(i.e. for our system k cat/ K m approximately 10(5) M-1 min-1). The pH dependence of observed rate constants in different divalent metal ion mixtures, where the 2'-aminoguanosine-dependent reaction is enhanced 6- and 35-fold compared with that in magnesium, strongly supports this conclusion. This is, to our knowledge, the first report on an intact self-splicing group I intron where use of different co-substrates and divalent metal ions shows that a deprotonation enhances the rate and verifies that the transitions occurring during splicing of group I introns are all part of a common reaction sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.

Bacteriophage T4 contains three self-splicing group I introns in genes in de novo deoxyribonucleotide biosynthesis (in td, coding for thymidylate synthase and in nrdB and nrdD, coding for ribonucleotide reductase). Their presence in these genes has fueled speculations that the introns are retained within the phage genome due to a possible regulatory role in the control of de novo deoxyribonucle...

متن کامل

Genes within genes: independent expression of phage T4 intron open reading frames and the genes in which they reside.

The td, nrdB, and sunY introns of bacteriophage T4 each contain a long open reading frame (ORF). These ORFs are preceded by functional T4 late promoters and, in the case of the nrdB intron ORF, a functional middle promoter. Expression of phage-encoded intron ORF-lacZ fusions indicates that these T4 genes are highly regulated. The lack of translation of these ORFs from early pre-mRNAs can be acc...

متن کامل

Metal ion interaction with cosubstrate in self-splicing of group I introns.

The catalytic mechanism for self-splicing of the group I intron in the pre-mRNA from the nrdB gene in bacteriophage T4 has been investigated using 2'-amino- 2'-deoxyguanosine or guanosine as cosubstrates in the presence of Mg2+, Mn2+and Zn2+. The results show that a divalent metal ion interacts with the cosubstrate and thereby influences the efficiency of catalysis in the first step of splicing...

متن کامل

A unique group of self-splicing introns in bacteriophage T4.

We describe in this review, the salient splicing features of group I introns of bacteriophage T4 and propose, a hypothetical model to fit in the self-splicing of nrdB intron of T4 phage. Occurrence of non-coding sequences in prokaryotic cells is a rare event while it is common in eukaryotic cells, especially the higher eukaryotes. Therefore, T4 bacteriophage can serve as a good model system to ...

متن کامل

Bacteriophage T4 ribonucleoside diphosphate reductase: on the defect causing decreased formation of the pz” subunit encoded by the nrdB93

Bacteriophage T4 ribonucleoside diphosphate reductase is composed of two proteins, a2 and p2, encoded by the nrdA and nrdB genes, respectively. The expression of nrdB is the limiting factor for the assembly of the enzyme. A recently described mutation, nrdB93, may give new insight into the regulation of synthesis of the p subunit encoded by nrdB. Infection by T4 nrdB93 produced only low concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 1997